Page 1 of 2
#1
I'm not going to say that my way of thinking is the correct way, but it is the way that makes the most sense to me.

If you draw a circle and label 12 equidistant points along the circumference (analogous to a clock) corresponding to the 12 notes, and connect the dots of the 7 notes corresponding to the C major (Ionian) key, you are left with a 7 sided polygon. It makes most sense to label "12 o'clock" as "D", this makes the polygon symmetrical along the Y axis, and it appears to be balanced in a gravitational sense.

If you analyze the 5 points, or notes, that aren't included in the original 7 sided polygon, you will derive the opposite, or tritone, of what is most commonly known as the A minor pentatonic scale, or the D#/Eb minor pentatonic scale.

I think it makes most sense to label the C major (Ionian) scale as the "D" scale, in the same way it makes most sense to balance the 7 sided pentagon. Which means it makes most sense to name the A minor pentatonic scale as the "D" pentatonic scale. Which means the commonly used interval names for the A minor pentatonic must now be adjusted to fit the new "D" pentatonic scale. In other words, the formula: 1-m3-4-5-m7 is now 1-2-4-5-7, A C D E G is now D E G A C.

The difference between this new pentatonic scale and the original full 7 note scale is that it leaves out the 3 and the 6. If you consider a triad, 1-3-5, it isn't really balanced. The distance between the notes, in terms of intervals, isn't equal anywhere. It doesn't go full circle so to say. If you consider a triad as the 1-3-6, it becomes balanced. The distance between the 1 and 3, and the 6 and 1 are equal in terms of intervals. Not only is it equal in terms of intervals, but it simply sounds symmetrical.

It makes sense to me to call this 3 note scale as a tritonic scale, as the pentatonic scale is a 5 note scale. The original 7 note scale should be called a heptatonic scale.

In my picture I uploaded, I have all 3 of these concepts illustrated with guitar diagrams for the scales. Please note the guitar shapes are for a guitar tuned in 4th's, because it makes more sense than standard tuning, to me that is.

What does this all mean? Has jrcsgtpeppers gone mad? I don't think so... This is just a simply way of thinking about music for the guitar. I'm sure it seems confusing at first, and it might always just seem confusing and redundant, but it isn't that complicated. There are many ways of thinking about music on the guitar, and they all work for the people they work for, this just works for me. If I was to program a robot to play guitar, like a chess computer plays chess, I would program this information, and it would give access to all sorts of different sounds.

Fun fact, the fully diminished scale, aka a perfectly symmetrical tetratonic scale (;, makes a perfect square, and the augmented triad, aka a perfectly symmetrical tritonic scale, makes a perfect triangle. These shapes don't sound pretty to me probably because they are too evenly balanced.

My next step is to simplify chords in a way that makes sense. I've always been jealous of piano players because they can play a linear 1-3-5-7-9-11-13 chord, but on the guitar that would be impossible. I would be happy if there was a simple way of notating chords, as the way I notate scales.

Feel free to pick at my ideas and point out all the flaws. I would honestly love for this to spark someone's imagination.

Edit: I knew the picture was going to be tiny af, I'm gonna look for a way to upload a larger image. I made it in paint by the pixel lol. The colors used are symmetrical to the rainbow ^.^
Attachments:
Guitar Theory.png
Last edited by jrcsgtpeppers at Feb 3, 2016,
#2
Dude, two words: John Coltrane.

Edit: Okay, you're probably aware of what Coltrane did except you just did it with intervals instead.
Last edited by GoldenGuitar at Feb 3, 2016,
#3
I'm not here to say that your ideas are wrong, they are simply a way that you have taken notes, departed an established order, and created a new order with new rules and observations based upon the aesthetics of visual symmetry.

I mean, even John Coltrane came up with an interesting take based upon the Augmented...which is what I thought of when reading your symmetrical "balance" points.

I do not know whether what you have compares any longer to what we have. It may be a departure from it, and if so, as long as its understood, that is the case, I think it is okay.

So now all that matters is if you can create something personally meaningful from this new musical frontier that you have apparently found appealing to you.

Music is a personal thing. If Holdsworth can create his own system of understanding, I see no reason why you or anyone else cannot. As long as you do not presume to bridge the two.

The extent that you actually create something musically that is appealing and pleasing to anyone else besides yourself, is the degree that your ideas will be of interest to other musicians. If you come back and there's something wonderfully beautiful and bizarre and complex about what we are hearing, then I believe your ideas and concepts will be further accepted by others.

If it doesn't, well, then as long as you like it, then you will always have an audience of one.

Best,

Sean
Last edited by Sean0913 at Feb 3, 2016,
#4
It's awesome both of you mentioned John Coltrane and Alan Holdsworth because I've watched that Alan guitar lesson a few times, where he explains all the different chords and scales he uses and the systems and diagrams he likes. I've also studied the Coltrane changes for a while now, some of my favorite ideas come from him.

I think another interesting idea is what happens when you drop the 1 out of the pentatonic scales, they become the 4 basic chords, maj7, 7, m7 and m7b5.

My goal is just to simplify everything I know on guitar into a few basic shapes. From there you should be able to recreate all possible sounds. Having a simple and solid foundation to base your entire thought process on makes improvising easy and fluid, which is my main goal. However I am having a hard time with chords. Sure, i know plenty of chords, I can fake any song in my real book just by sight reading, but chords on the guitar arent logical to me. Even the systems I've used fail to give my the same satisfaction as simply playing the chords in full on a piano.
#6
Quote by jrcsgtpeppers
I'm not going to say that my way of thinking is the correct way, but it is the way that makes the most sense to me.

If you draw a circle and label 12 equidistant points along the circumference (analogous to a clock) corresponding to the 12 notes, and connect the dots of the 7 notes corresponding to the C major (Ionian) key, you are left with a 7 sided polygon. It makes most sense to label "12 o'clock" as "D", this makes the polygon symmetrical along the Y axis, and it appears to be balanced in a gravitational sense.

If you analyze the 5 points, or notes, that aren't included in the original 7 sided polygon, you will derive the opposite, or tritone, of what is most commonly known as the A minor pentatonic scale, or the D#/Eb minor pentatonic scale.

I think it makes most sense to label the C major (Ionian) scale as the "D" scale, in the same way it makes most sense to balance the 7 sided pentagon.
Yes, the scale is symmetrical about D, because you can construct it by stacking 3 5ths in each direction outward from D. It's the most in-tune way of constructing a 7-note scale using ratios of 3 and 2 only.
This may be significant historically, but is kind of irrelevant in modern music, which uses tempered scales.
Quote by jrcsgtpeppers

Which means it makes most sense to name the A minor pentatonic scale as the "D" pentatonic scale.
Not at all. False logic. The pretty patterns you see have nothing to with how music works, in terms of establishing roots or tonal centres.

"A minor pentatonic" (like C major pentatonic) is so-called because A (or C) are used as keynotes of the scale.

Tonal scales are not symmetrical - that's why they work.
Quote by jrcsgtpeppers

Which means the commonly used interval names for the A minor pentatonic must now be adjusted to fit the new "D" pentatonic scale. In other words, the formula: 1-m3-4-5-m7 is now 1-2-4-5-7, A C D E G is now D E G A C.

The difference between this new pentatonic scale and the original full 7 note scale is that it leaves out the 3 and the 6. If you consider a triad, 1-3-5, it isn't really balanced. The distance between the notes, in terms of intervals, isn't equal anywhere.
Of course not. Why should it be?
The reason the 1-3-5 triad works is partly down to frequency relationships (the harmonic series of the root), partly down to familiar usage in conventional music.
Quote by jrcsgtpeppers

It doesn't go full circle so to say. If you consider a triad as the 1-3-6, it becomes balanced. The distance between the 1 and 3, and the 6 and 1 are equal in terms of intervals.
Not only is it equal in terms of intervals, but it simply sounds symmetrical.
That's an interesting observation. What do you mean by "sounds symmetrical"? How can a sound match a visual shape or relationship?
I guess you mean it "sounds good", and maybe you think it sounds better than a 1-3-5 triad.
In fact - in conventional terms - what you have is a 3-5-1-3 inverted minor triad. (C-E-A-C).
It does sound nice. The chord sounds a little like Am, a little like C6.
I guess you could say that's a "balanced" sound. It IS an A minor triad, but the two Cs (one of them in the bass) persuades us C might be the root.
But don't get seduced by the patterns; they mislead.
Quote by jrcsgtpeppers

It makes sense to me to call this 3 note scale as a tritonic scale, as the pentatonic scale is a 5 note scale. The original 7 note scale should be called a heptatonic scale.
Well, it is, sometimes. "Tritonic" makes sense, although it risks confusion with "tritone". And of course your particular 3 note scale is just a triad anyway.
Quote by jrcsgtpeppers

In my picture I uploaded, I have all 3 of these concepts illustrated with guitar diagrams for the scales. Please note the guitar shapes are for a guitar tuned in 4th's, because it makes more sense than standard tuning, to me that is.
Sure, that's understandable. You're in a minority, but you're not alone.
Quote by jrcsgtpeppers

What does this all mean? Has jrcsgtpeppers gone mad? I don't think so... This is just a simply way of thinking about music for the guitar.
Simple to you, maybe.
Quote by jrcsgtpeppers
I'm sure it seems confusing at first, and it might always just seem confusing and redundant, but it isn't that complicated.
Complicated, no. Confusing, not really. Redundant, yes. (Beside the point, in terms of actual musical sound.)
Quote by jrcsgtpeppers

There are many ways of thinking about music on the guitar, and they all work for the people they work for, this just works for me. If I was to program a robot to play guitar, like a chess computer plays chess, I would program this information, and it would give access to all sorts of different sounds.
Sure. But probably not that different in the end. A lot of the time, it would be giving new names to common sounds. (Such as thinking of a 1st inversion minor chord as a "1-3-6" triad.)
Quote by jrcsgtpeppers

Fun fact, the fully diminished scale, aka a perfectly symmetrical tetratonic scale (;, makes a perfect square, and the augmented triad, aka a perfectly symmetrical tritonic scale, makes a perfect triangle. These shapes don't sound pretty to me probably because they are too evenly balanced.
There you go! Big clue there!
"Pretty" sounds are not produced by symmetrical scales or harmonies.
Pretty patterns don't produce pretty sounds! (Except in rhythm, interestingly enough....)
Quote by jrcsgtpeppers

My next step is to simplify chords in a way that makes sense. I've always been jealous of piano players because they can play a linear 1-3-5-7-9-11-13 chord, but on the guitar that would be impossible. I would be happy if there was a simple way of notating chords, as the way I notate scales.
There is. The conventional method is as simple as it gets, at least for the common chord types we use. That's why it's evolved the way it has.
It's true that that becomes a self-supporting system, tending to prevent exploration of more unusual harmonies, simply because we have trouble naming them other than as deviations from the norm. That's unfortunate.
Quote by jrcsgtpeppers

Feel free to pick at my ideas and point out all the flaws. I would honestly love for this to spark someone's imagination.
This sort of thing is easily observed, at least when playing with the circle of 5ths, and will have occurred to countless musicians before. If you haven't heard of the idea before, that will be because all those musicians soon realised it led nowhere useful.
Likewise the observations of patterns on the fretboard, which are purely a by-product of the tuning system. and their shapes have no musical meaning.
As you've seen, tuning in all 4ths produces simpler fretboard patterns - more consistent across the neck - which is certainly an advantage in some ways. There's no logical (musical) reason why a guitar shouldn't be tuned like that. It's only tradition that means few people try it, because by the time they discover it they're already used to EADGBE, and have to more or less start again.
At the same time, EADGBE wasn't designed by some crazy person. It's been settled on as a useful tuning, for various practical reasons.
Quote by jrcsgtpeppers

Edit: I knew the picture was going to be tiny af, I'm gonna look for a way to upload a larger image. I made it in paint by the pixel lol. The colors used are symmetrical to the rainbow ^.^
Again, the rainbow is a pretty pattern, but totally irrelevant. The notion that the rainbow has seven colours is just a convention, not a scientific fact; it's just a continuous spectrum of wavelength.
#7
Quote by jrcsgtpeppers

I think another interesting idea is what happens when you drop the 1 out of the pentatonic scales, they become the 4 basic chords, maj7, 7, m7 and m7b5.
Depends which pentatonic you're talking about...
Let's see:
A minor/C major pent without the C = D E G A.
Without the A = C D E G.
Which of those three chords types are those?

Or maybe you mean your D E G A C pentatonic. You do get Am7 if you drop the D from that.
But which pentatonics give us maj7, 7 and m7b5 chords?
The only way you can do that is by inventing some unorthodox pentatonic scales in the first place. Selecting the right 5 notes from a 7-note scale in order to give a 4-note 7th chord when you drop one!

Like I say - don't get seduced by pretty patterns... they can screw up your thinking.
Quote by jrcsgtpeppers

My goal is just to simplify everything I know on guitar into a few basic shapes. From there you should be able to recreate all possible sounds.
I can do that already from the conventional shapes.
Quote by jrcsgtpeppers

Having a simple and solid foundation to base your entire thought process on makes improvising easy and fluid, which is my main goal. However I am having a hard time with chords. Sure, i know plenty of chords, I can fake any song in my real book just by sight reading, but chords on the guitar arent logical to me.
Because you're looking for the wrong kind of logic.
Quote by jrcsgtpeppers
Even the systems I've used fail to give my the same satisfaction as simply playing the chords in full on a piano.
Another good clue.
Your EAR is your judge here (and it's not making any mistakes). You're trying to overrule it with your EYE; or rather with the way your brain makes sense of what it sees.

"The brain is the only part of your body that can be wrong."
#9
Welp, Jon said literally everything I was going to say so...
"There are two styles of music. Good music and bad music." -Duke Ellington

"If you really think about it, the guitar is a pointless instrument." - Robert Fripp
#10
Yeah... Just because something looks pretty on paper doesn't mean it sounds good. Music is all about sound. Music is the same regardless of the instrument. If you know where the notes are on your fretboard, nothing will feel any more illogical than it feels on a piano.

The triad doesn't look "balanced", but that doesn't matter. It's the sound that matters.

I see that you are trying to make sense about music by using math and shapes and that kind of stuff. But again, a pretty shape is not necessarily a pretty sound. It may work for experimenting. But that's about it. Music is not about symmetrical shapes. On some instruments it may be (but that is just a coincidence and has to do with the way the instrument is tuned). But music is the same on every instrument. What works on piano works on guitar and also works on all other instruments.

The shapes make sense if you know the intervals and the note names and how chords and scales are built.
Quote by AlanHB
Just remember that there are no boring scales, just boring players.

Gear

Bach Stradivarius 37G
Charvel So Cal
Fender Dimension Bass
Hartke HyDrive 210c
Ibanez BL70
Laney VC30
Tokai TB48
Yamaha FG720S-12
Yamaha P115
Last edited by MaggaraMarine at Feb 3, 2016,
#11
Quote by Jet Penguin
Welp, Jon said literally everything I was going to say so...


#JonForMTMod2016

Quote by MaggaraMarine
The triad doesn't look "balanced", but that doesn't matter. It's the sound that matters.


My thoughts pretty much. I think all sorts of diagrams and patterns and visual representations are kind of obsolete, since sound and music don't really have a physical shape. If something sounds good, it sounds good, regardless of how it looks on paper.
Quote by Jet Penguin
Theory: Not rules, just tools.

Quote by Hail
*note that by fan i mean that guy who wants his friends to know he knows this totally obscure hip band that only he knows about with 236 views on youtube. lookin' at Kev here
#13
Quote by jongtr

Your EAR is your judge here (and it's not making any mistakes). You're trying to overrule it with your EYE; or rather with the way your brain makes sense of what it sees.

"The brain is the only part of your body that can be wrong."

And this is the lesson you, TS, seriously need to learn. I remember you posting threads about 4/5 time signatures and all that. Why people were against them was because it's the sound that matters. You can write stuff with fancy theoretical ideas but the thing is, nobody hears those theoretical ideas. It's the sound that matters. It may sound cool, but nobody really cares about 4/5 time signatures (especially when it sounded like 4/4 with quintuplets - but that's another discussion). What people care about is the sound.

Now, theoretical concepts may give some ideas to experiment with of course. So keep on doing what you are doing - I remember some of your tracks and they did sound interesting. But also remember that music is about sound, not about any of the fancy theoretical concepts that you come up with.

There are reasons why a triad is a triad. It's not about symmetry, it's about sound. Music theory describes sound. Symmetrical shapes may look pretty, but that has nothing to do with sound. If it doesn't apply to actual music, it doesn't. Sound first, theory second.

The best way to make sense of music is to use your ears.
Quote by AlanHB
Just remember that there are no boring scales, just boring players.

Gear

Bach Stradivarius 37G
Charvel So Cal
Fender Dimension Bass
Hartke HyDrive 210c
Ibanez BL70
Laney VC30
Tokai TB48
Yamaha FG720S-12
Yamaha P115
Last edited by MaggaraMarine at Feb 3, 2016,
#14
Just to echo what I said earlier in shorter form... ("echo", ha, that's good...)

Stop looking and start listening.

Close your eyes. Now play some music, and find patterns that way. With your eyes closed.
#15
Jon said everything I was going to say, but Zach said everything I WANTED to say
"There are two styles of music. Good music and bad music." -Duke Ellington

"If you really think about it, the guitar is a pointless instrument." - Robert Fripp
#16
Quote by jrcsgtpeppers
I'm not going to say that my way of thinking is the correct way, but it is the way that makes the most sense to me.

If you draw a circle and label 12 equidistant points along the circumference (analogous to a clock) corresponding to the 12 notes, and connect the dots of the 7 notes corresponding to the C major (Ionian) key, you are left with a 7 sided polygon. It makes most sense to label "12 o'clock" as "D", this makes the polygon symmetrical along the Y axis, and it appears to be balanced in a gravitational sense.

If you analyze the 5 points, or notes, that aren't included in the original 7 sided polygon, you will derive the opposite, or tritone, of what is most commonly known as the A minor pentatonic scale, or the D#/Eb minor pentatonic scale.

I think it makes most sense to label the C major (Ionian) scale as the "D" scale, in the same way it makes most sense to balance the 7 sided pentagon. Which means it makes most sense to name the A minor pentatonic scale as the "D" pentatonic scale. Which means the commonly used interval names for the A minor pentatonic must now be adjusted to fit the new "D" pentatonic scale. In other words, the formula: 1-m3-4-5-m7 is now 1-2-4-5-7, A C D E G is now D E G A C.

The difference between this new pentatonic scale and the original full 7 note scale is that it leaves out the 3 and the 6. If you consider a triad, 1-3-5, it isn't really balanced. The distance between the notes, in terms of intervals, isn't equal anywhere. It doesn't go full circle so to say. If you consider a triad as the 1-3-6, it becomes balanced. The distance between the 1 and 3, and the 6 and 1 are equal in terms of intervals. Not only is it equal in terms of intervals, but it simply sounds symmetrical.

It makes sense to me to call this 3 note scale as a tritonic scale, as the pentatonic scale is a 5 note scale. The original 7 note scale should be called a heptatonic scale.

In my picture I uploaded, I have all 3 of these concepts illustrated with guitar diagrams for the scales. Please note the guitar shapes are for a guitar tuned in 4th's, because it makes more sense than standard tuning, to me that is.

What does this all mean? Has jrcsgtpeppers gone mad? I don't think so... This is just a simply way of thinking about music for the guitar. I'm sure it seems confusing at first, and it might always just seem confusing and redundant, but it isn't that complicated. There are many ways of thinking about music on the guitar, and they all work for the people they work for, this just works for me. If I was to program a robot to play guitar, like a chess computer plays chess, I would program this information, and it would give access to all sorts of different sounds.

Fun fact, the fully diminished scale, aka a perfectly symmetrical tetratonic scale (;, makes a perfect square, and the augmented triad, aka a perfectly symmetrical tritonic scale, makes a perfect triangle. These shapes don't sound pretty to me probably because they are too evenly balanced.

My next step is to simplify chords in a way that makes sense. I've always been jealous of piano players because they can play a linear 1-3-5-7-9-11-13 chord, but on the guitar that would be impossible. I would be happy if there was a simple way of notating chords, as the way I notate scales.

Feel free to pick at my ideas and point out all the flaws. I would honestly love for this to spark someone's imagination.

Edit: I knew the picture was going to be tiny af, I'm gonna look for a way to upload a larger image. I made it in paint by the pixel lol. The colors used are symmetrical to the rainbow ^.^



Why are you doing all of that? What are the advantages? The only advantages I could tell from that post, was that if you built a diagram system of representation, your naming system appeared more logical. But I don't use diagrams to make music, so that particular aspect is unappealing to me.

The way you tune your guitar also seems easier at first, but it limits the chords shapes you can play.

Ya, the piano is far superior to guitar in certain instances, and that's what I like about it, but guitar just isn't like that. You have to put more work into guitar to be able to understand it more fluently. Piano is very visually simple, and in a given key is much easier to learn. Every C looks like a C. But every key is different. On guitar every key is the same, but every note looks the same. You have to learn exactly where they are.

There are advantages to each.

I have some ways of looking at guitar that help it be more similar to piano. Your tuning method is one of those ways, but I couldn't adopt that because of its limitations.

I got good at piano before guitar, but I've since surpassed my piano skills on guitar, in most keys, anyway, so I have a very sort of piano centric way of looking at guitar, and I have learned a number of things to help me look at guitar as simply as possible, just like you are trying to do.

Except, like I said, I won't change the tuning, because it is more limiting, and not really a big deal to cope with at all, and I don't see your advantage of calling the C major scale the D scale, and the A minor pentatonic the D pentatonic. That seems a LOT more complicated than anything on piano, or the normal way.

Look at the piano. Look at the white notes. Start on C and go through the white notes, that's C major. It doesn't get easier than that. You start on C, C is the root, so you call it C. You can do the same for every other white note, the modes, but they sound different, and what's important in music is naming sound, so you give each its own name. Very easy and intuitive.

I get the feeling that one day, if you continue to play guitar and improve, you'll get to a point where you discover the shortcomings of your method. But maybe not.

And although I'm interested to see the advantages you believe you are benefiting from with that system, there's no way I would ever embark on that now. I got my system down pretty good. Sure, some things you need to work at a little, but that's the deal. After a while it becomes easy.

Just like english writing is stupid and there are lots of dumb words spelled in weird ways for no reason, like "knife" and "tough" and "through" not even consistent. But it's easy for us because we quickly get used to it. It's not a big deal. That topic is actually pretty complicated once you think about it, so i don't know if changing all language to perfect phonetic spelling is the best thing. But either way, it's too big of a thing to change because we're too deep into it. It's so much work. It makes more sense just to learn how to spell the stupid words. It's not a big deal.

I've analyzed music theory though, and tried to make as simple as possible, and name in the smartest way I could think of, the most suitable way for learning guitar quickly and easily, and for the most part, history did a good job at organizing music, imo. That's what I discovered.

For your method, I fail to see the advantages. I know why you tune the way you do, that seemed like a good idea to me also, but I don't see in what way renaming your scales helps you to think about music. It looks to me more complicated, and will just be a pain for talking to people about music, because you'll have to learn 2 systems.

And I know all about that, because I actually have an unorthodox naming convention myself, but it's not so elaborate, and is easy to cope with, and convert to the standard way when I speak to people about it. It's to do with roman numerals, and even if I use them my way, other people would be able to play what I'm talking about, even in their system.

So, for me, I'm not interested in diagrams and methodologies for naming, quite so much. I am interested in making music and in how a methodology helps you do that. And then, whatever I might learn the shapes thing, but honestly I really don't care. If you picked names out of a hat, and that randomly named stuff, and that was the most effective naming system for helping you make music, and think about music, I would use that. Before, not now. Now I'm pretty much locked in, unless something similar enough to my current system comes along and I notice advantages.

Something else to think about, you spent all of this time analyzing that stuff and drawing diagrams pixel by pixel in paint, which you could have used to just learn the tried and true patterns on your guitar. Once they are internalized, the shapes become easy and intuitive. Just like "knife" doesn't appear to be a strange and unusual word, because you know it. So, it is often worth it to spend a little time to learn something, because the potential is greater. If you could choose to learn something that faster and easier to learn, but has a more limited potential, would you choose that? Or would you choose something that takes a little more time to learn, but has a greater potential?
Last edited by fingrpikingood at Feb 4, 2016,
#17
I had the same thought as Fingrpickingood. Music theory and names are a convenient way to make it easier to interact with other musicians. It's a common language of expression. It makes sense as it is and any musician from anywhere can understand what you are doing because of that common thread. Maybe it's just me but I am not understanding why anyone would do this (that's a distinct possibility that maybe I am the one not seeing the advantage). Don't fix it if it isn't broken.
Yes I am guitarded also, nice to meet you.
#18
jrcsgtpeppers - I'm going to try to get on your level and discuss some of my thoughts on your ideas.

Consider this: What is the strongest symmetrical relationship of any point in a circle to another point on that same circle? I would argue that it would be the point on the circle directly opposite (at 180 degrees).

You have the tritone in that position.

Thus in your circle the strongest symmetrical relationship with the fundamental is the note with the weakest harmonic relationship...yet you are disappointed the strong harmonic relationships of say a major triad are not represented by symmetrical shapes but that the apparent symmetry of the diminished or augmented chords aren't particularly harmonious (pretty). It's no mystery man - you've deliberately set your circle up to NOT show a correlation between symmetry and harmony.

So why put that note at that position in your circle?

I assume the reason is something along the lines that there are 12 notes that we perceive as being an equal musical distance from one another so the sixth note goes in that position right?

Well it's as good a reason as any...but it's not a reason that is based on a correlation between symmetry and harmony...and it's not the only reason you could use to determine what note goes in that 6 o'clock position.

The strongest harmonic relationship in music between two different pitch classes is that between the fundamental and the perfect fifth. So why not put that in the six o'clock position to reflect the strong symmetry?

After all the perfect fifth is 1.5 times the fundamental while the octave is 2x the fundamental. So if we took the circumference of the circle to represent a linear frequency then placing our notes around the circle would put the perfect fifth in the 6 o'clock position.

You probably realize that this would result in more notes in the first half of the circle than in the second half and we would loose the visual perception that the notes were an equal distance away from each other. But you need to decide what you want your visuals to show - symmetry for harmony...or the equal distance of the 12TET scale.

Here's a rough mockup of a circle with the chromatic notes showing the triad as a nice reasonably symmetrical isosceles triangle.




What's more is that we can even start to map some of the harmonic series off the root note and notice some nice symmetrical shapes forming...we also notice that some of the harmonics fall in between the notes of the chromatic scale.



Of course the problem here is that in setting our circle up this way (with a linear frequency-distance relationship) then we are no longer showing the perceived equal distance between the notes. The sound of the distance at the end of the circle from Bb to B is perceived sonically as equal to the sound distance between C and Db at the start of the circle. Yet visually this circle gives the impression that they are in fact much further away.

This problem, and the problems you found in your original circle, are largely an issue with trying to force a logarithmic scale into a circle. It can't show both things, so you have to choose which to show.

If we wanted to show both the harmonic/symmetry relationship and that there is an equal distance between each chromatic step in the scale then we would use a logarithmic spiral instead of a circle.

The following spiral isn't calculated at all it's just a rough sketch by eye (and poorly done at that) but hopefully you get the idea...


Of course this still doesn't capture everything and in many respects the whole concept is flawed but if you're going to go down this road then you need to be more aware of the underlying maths.

-And I felt like drawing some pictures too I didn't use the attachment option though. I save my pictures to a photobucket account and then link them using tags.

Just get your original pic the right size first. I can't remember how many pixels across the forum comment boxes are...it's something like if you make your pic 600pixels across I think you'll be okay without causing it to resize which can be annoying.
Si
#19
Logarithm! Spiral!

Now we're talking...

(anyone want to point out the resemblance to the inner ear?)

The curve of the harmonic series? (approximate pitches shown):



The patterns are about ratio, multiplication and division - not symmetry.
Squares? Triangles? Circles? Forget it!
Last edited by jongtr at Feb 5, 2016,
#20
Why do we name chords from the perspective of down to up? A C E G might be moving in 3rds away from a starting point, but G E C A is moving in thirds going downwards, but we dont call that a Gm7 chord, we call it an Am7.The entire purpose of everything I've done wasnt to prove only equilateral symmetry sounds good, I dont know where you got that from, it was to rename the pentatonic scale and the key signature names. I think it shouldnt be called C major, indicating no sharps or flats, it should simply be D, because D is the midpoint of balance in the 7 sided polygon. I am aware the entire key sounds like it wants to land on the C note, which is perfectly fine. It almost wants to land on F, but it doesnt, because the B pushes to C, where as a Bb would lead it back to the F. However, it just doesnt make any sense to me why we name things the way we do.

More so, I'm just looking for new patterns for scale and arpeggios shapes, and I dont like the idea of playing just the 1, 3 and 5, and calling it a day. I think it's preposterous. It doesnt make sense. Playing the 1 3 5 7 2 4 6 makes more sense. a 1 2 4 6 chord makes just as much sense as a 1 3 5 7 chord. Who says the A in the Am7 should have the whole chord named after it? Why not any of the other 3? An Am7/G could be called a Gsus2sus4sus6 chord. Sure it looks lengthy but in a parallel universe it would be the norm.

These questions are important. The shape of the D E G A C pentatonic scale looks like it should be named after the D note, but everyone else calls it the Am pentatonic scale, A C D E G. It doesnt make sense... Why not name it the G pentatonic scale? G A C D E, or 1 2 4 5 6. What makes 1 3 4 5 7 the pentatonic formula?

I also ask myself sometimes... why 440? Why not tune to something else? Does it have any empirical significance? Like the length of a second, is it based off of anything non theoretical? Why not any other hertz? Dont sound waves make sand turn into geometric shapes at different frequencies? Why not tune to one of those? These are important questions.

jongtr, can you explain the bottom two pictures, of the harmonic series?
#21
Quote by jrcsgtpeppers
Why do we name chords from the perspective of down to up?

Because the alphabet starts with A, so we naturally count notes in alphabetical order too. And A is a lower note than B. It's also because THAT'S HOW CHORDS WORK. The root note of the chord generally is so called because it's the one that determines the overall "pitch" of the chord. It's called an A chord because in sounds like A. Obviously there's chords where the intervals make the sound a little more fuzzy, all the way up to diminished chords although it's not coincidence that as the ability to define a chord aurally gets a little fuzzier so do naming conventions.


Quote by jrcsgtpeppers
These questions are important. The shape of the D E G A C pentatonic scale looks like it should be named after the D note, but everyone else calls it the Am pentatonic scale, A C D E G. It doesnt make sense... Why not name it the G pentatonic scale? G A C D E, or 1 2 4 5 6. What makes 1 3 4 5 7 the pentatonic formula?


Because,as many people have already pointed out, music is about sounds. Not pictures.
Actually called Mark!

Quote by TNfootballfan62
People with a duck for their avatar always give good advice.

...it's a seagull

Quote by Dave_Mc
i wanna see a clip of a recto buying some groceries.


stuffmycatswatchontv.tumblr.com
#22
Quote by jrcsgtpeppers
Why do we name chords from the perspective of down to up? A C E G might be moving in 3rds away from a starting point, but G E C A is moving in thirds going downwards, but we dont call that a Gm7 chord, we call it an Am7.

We name chords according to the root of the chord. Chords are built by stacking thirds on top of each other. The chord name "Am7" refers to "A" - root note; "m" - minor third; the fifth is assumed to be perfect, diminished or augmented fifth would be indicated in the chord name (b5 and #5); "7" refers to the minor 7th of the chord - major 7th would also be indicated in the chord name (maj7). Chord names are logical - they tell about the intervals on top of the root note. You could of course come up with another way of naming chords. But by using this logic, calling that chord a "Gm7" would make no sense.

The entire purpose of everything I've done wasnt to prove only equilateral symmetry sounds good, I dont know where you got that from, it was to rename the pentatonic scale and the key signature names. I think it shouldnt be called C major, indicating no sharps or flats, it should simply be D, because D is the midpoint of balance in the 7 sided polygon. I am aware the entire key sounds like it wants to land on the C note, which is perfectly fine. It almost wants to land on F, but it doesnt, because the B pushes to C, where as a Bb would lead it back to the F. However, it just doesnt make any sense to me why we name things the way we do.

We name keys after the tonic. A minor and C major have the same notes in them but they function differently. That's why the same set of notes has two different names. Music is all about sounds and A minor and C major sound way different. That's why the same set of notes has two different names.

More so, I'm just looking for new patterns for scale and arpeggios shapes, and I dont like the idea of playing just the 1, 3 and 5, and calling it a day. I think it's preposterous. It doesnt make sense. Playing the 1 3 5 7 2 4 6 makes more sense. a 1 2 4 6 chord makes just as much sense as a 1 3 5 7 chord. Who says the A in the Am7 should have the whole chord named after it? Why not any of the other 3? An Am7/G could be called a Gsus2sus4sus6 chord. Sure it looks lengthy but in a parallel universe it would be the norm.

Because A is the root of that chord - it is the most stable sound. Again, it has to do with sound. It all originally comes from the overtone series.

These questions are important. The shape of the D E G A C pentatonic scale looks like it should be named after the D note, but everyone else calls it the Am pentatonic scale, A C D E G. It doesnt make sense... Why not name it the G pentatonic scale? G A C D E, or 1 2 4 5 6. What makes 1 3 4 5 7 the pentatonic formula?

Again, it has to do with the tonic. If we are in A minor, we call the scale Am pentatonic because A sounds like the tonic. If we are in C major, we call the scale C major pentatonic because C sounds like the tonic.

I'm sure the D E G A C is some kind of a D pentatonic scale too. It may have some fancy name. But the sound of it is not as "stable" as Am or C major pentatonic because it doesn't have a major or minor third in it. The "tonic triad" would be a sus2 or sus4 chord, not a major or minor chord.


I also ask myself sometimes... why 440? Why not tune to something else? Does it have any empirical significance? Like the length of a second, is it based off of anything non theoretical? Why not any other hertz? Dont sound waves make sand turn into geometric shapes at different frequencies? Why not tune to one of those? These are important questions.

440 Hz is just a standard that people agreed on. Not everybody tunes in 440 Hz, just like not everybody tunes their guitar E A D G B e. People have used different frequencies for A over time. IIRC, 415 Hz was quite common during baroque. But it was not a standard tuning. 440 Hz is the first global standard. Why is it 440 Hz? I don't know. People just decided it is. Maybe it was the most commonly used frequency to tune the A to. But that doesn't matter - the point is, we need some kind of a standard so that instruments work. It is not a problem for string instruments but it is a problem for wind instruments. You can't tune a wind instrument to whatever tuning you want because tuning a wind instrument requires you to lengthen or shorten the tube.


Also, we have a thing called equal temperament that is a compromise that makes all keys sound basically the same. This is not how it has always been. The best sounding tuning would be just intonation which is based on the overtone series. But if we used it, we could only make one key sound good and all other keys would sound way out of tune. So this is why we have 12 tone equal temperament. It allows us to play in any key and every key sounds as good (or bad) as the others.


So, it all comes down to sound. The things are named the way they are because of history. There's logic behind it. It's not about shapes or anything. It's about sound. And it makes perfect sense. It may be easier to visualize on piano, but that doesn't matter. Music isn't visual, it is aural. It's the flaw of instrument design if an instrument doesn't make sense. Be glad that you chose such a simple instrument as guitar. Guitar still makes a lot of sense. All shapes on the fretboard are movable and that's the advantage of guitar. My main instrument is trumpet and it makes absolutely no sense. The fingerings seem completely random. They are of course based on the overtone series, but that's not the first thing you learn about music. Starting to play the trumpet or any wind instrument is way more difficult than guitar or piano. Piano and guitar are very logical instruments.
Quote by AlanHB
Just remember that there are no boring scales, just boring players.

Gear

Bach Stradivarius 37G
Charvel So Cal
Fender Dimension Bass
Hartke HyDrive 210c
Ibanez BL70
Laney VC30
Tokai TB48
Yamaha FG720S-12
Yamaha P115
Last edited by MaggaraMarine at Feb 6, 2016,
#23
Quote by jrcsgtpeppers
Why do we name chords from the perspective of down to up? A C E G might be moving in 3rds away from a starting point, but G E C A is moving in thirds going downwards, but we dont call that a Gm7 chord, we call it an Am7.The entire purpose of everything I've done wasnt to prove only equilateral symmetry sounds good, I dont know where you got that from, it was to rename the pentatonic scale and the key signature names. I think it shouldnt be called C major, indicating no sharps or flats, it should simply be D, because D is the midpoint of balance in the 7 sided polygon. I am aware the entire key sounds like it wants to land on the C note, which is perfectly fine. It almost wants to land on F, but it doesnt, because the B pushes to C, where as a Bb would lead it back to the F. However, it just doesnt make any sense to me why we name things the way we do.


I don't understand why that matters. Why is that polygon important to you? What advantage do you get from naming it that way? You don't think that it's weird that the tonic in D major key is C? What's the tonic in F major? I don't know, and to find out, I'd have to create this whole crazy diagram, just to figure out. As it is now, I can tell you the tonic of every key, without knowing anything at all. It's so much more simple. I don't know why you think it makes more sense to create this elaborate naming system, which everyone would have to learn, for gaining a benefit I don't see. It just seems way more confusing and pointless your way, to me. Music theory is really simple, for the most part. I can't think of any real way to make it any simpler, except for the roman numerals, for me.

More so, I'm just looking for new patterns for scale and arpeggios shapes, and I dont like the idea of playing just the 1, 3 and 5, and calling it a day. I think it's preposterous. It doesnt make sense. Playing the 1 3 5 7 2 4 6 makes more sense. a 1 2 4 6 chord makes just as much sense as a 1 3 5 7 chord. Who says the A in the Am7 should have the whole chord named after it? Why not any of the other 3? An Am7/G could be called a Gsus2sus4sus6 chord. Sure it looks lengthy but in a parallel universe it would be the norm.


It is not a "who says" They are named that way because of what they sound like. All things in music are named in such a way that it all makes sense how everything fits together. You can name the same set of notes in different ways, and sometimes it makes more sense to name a chord an unorthodox way, depending on how it fits in the music you're playing, but usually you would name it according to the root, because the ear perceives the root as the important note that establishes the sound of the chord. It's not because of numbers and spreadsheets.

These questions are important. The shape of the D E G A C pentatonic scale looks like it should be named after the D note, but everyone else calls it the Am pentatonic scale, A C D E G. It doesnt make sense... Why not name it the G pentatonic scale? G A C D E, or 1 2 4 5 6. What makes 1 3 4 5 7 the pentatonic formula?


Again, the sound of it. Those 5 notes are important, they have a unique sound, and they do resolve, and you can build modes out of them as well. You name them, again, according to the tonic, because that's the strong note that defines the sound of the whole thing, and you use that pattern because our ears picked it out as important. You built this whole theory of why stuff should be named, but why would you do that? What's important is the sound things make and how the notes relate to the experience of sound, to me anyway. Not some equation you can draw that demonstrates mathematically how another name might be appropriate. I really don't care. It needs a name, and naming it by sound, and by how everything works, makes sense. There a whole consistent methodology there.

The people that designed it that way weren't idiots. Look before you, everything that has been discovered. It's not stupid the way it is. A lot of smart people scrutinized it already. That's why it is the way it is now.

I also ask myself sometimes... why 440? Why not tune to something else? Does it have any empirical significance? Like the length of a second, is it based off of anything non theoretical? Why not any other hertz? Dont sound waves make sand turn into geometric shapes at different frequencies? Why not tune to one of those? These are important questions.
Because it's arbitrary. Why do you care what geometric shape a tone would make in sand? That serves no purpose. It made more sense when they decided it, to be 440, for just some historical reasons, but why change it? Why change everything, because on the off chance someone checks what 'A' looks like with sand, they will find it some sort of interesting shape? If there was no constant and we were looking for some reasons to help decide what frequency A should be, that's as good a way as any, but we're not, so it's really pointless.
Last edited by fingrpikingood at Feb 6, 2016,
#24
Quote by jrcsgtpeppers
Why do we name chords from the perspective of down to up?
There's an acoustic principle that low frequencies dominate. The harmonic series of a note is composed of higher frequencies than the one we hear (the fundamental).
If we make a chord using notes from the harmonic series of its root, we get a consonant chord, in which the lowest note sounds like the root.
Compare the difference between a C chord and C/E, or D and D/F#. When the 3rd is on the bottom it doesn't sound as "stable", as "rooted".
That's essentially why we count scales and chords upwards, because low notes rule!

(In Ancient Greece they counted their scales downwards, but then they had no chords, no harmony, so the role of the "fundamental" was of less interest.)
Quote by jrcsgtpeppers

The entire purpose of everything I've done wasnt to prove only equilateral symmetry sounds good, I dont know where you got that from, it was to rename the pentatonic scale and the key signature names.
Yes, but why?
Quote by jrcsgtpeppers

I think it shouldnt be called C major, indicating no sharps or flats, it should simply be D, because D is the midpoint of balance in the 7 sided polygon.
But there you go, attaching some kind of importance to "midpoints" and "balance". They're irrelevant concepts.
Quote by jrcsgtpeppers

I am aware the entire key sounds like it wants to land on the C note, which is perfectly fine. It almost wants to land on F, but it doesnt, because the B pushes to C, where as a Bb would lead it back to the F. However, it just doesnt make any sense to me why we name things the way we do.
But you've just given a reasonable explanation of why we do name things the way we do! Because of that sense of "pushing". C is like a "gravitational centre" of the scale, it pulls the others to it.
B and F both pull down to chord tones of the C major tonic.
Quote by jrcsgtpeppers

I also ask myself sometimes... why 440? Why not tune to something else? Does it have any empirical significance?
No.
My own belief (not scientific AT ALL! ) is that "A" was so-called because it was the lowest note that men could comfortably sing. (Our theory all begins with medieval monks singing.) A was the lowest note in the range of the medieval modes. (But not the keynote of any of them.) So they just called their bottom note and worked up from there.
There was no exact reference for centuries (different places had their own), but it pretty much aligns with the A of guitar 5th string (now set at 110 Hz).
440 is used (AFAIK), rather than 110, 220, etc, because it's the A above middle C, which is in the range of most instruments.
Quote by jrcsgtpeppers

Like the length of a second, is it based off of anything non theoretical? Why not any other hertz? Dont sound waves make sand turn into geometric shapes at different frequencies? Why not tune to one of those? These are important questions.
To you maybe.
Quote by jrcsgtpeppers

jongtr, can you explain the bottom two pictures, of the harmonic series?
I suggest you google "harmonic series". Plenty of sites will explain it better than me.
#25
Other people have answered things well enough - root note determines prominence, and the most settled version is a thirds stack with root note as bass. All else is inversion.

Quote by jrcsgtpeppers at #33816595
I also ask myself sometimes... why 440? Why not tune to something else? Does it have any empirical significance? Like the length of a second, is it based off of anything non theoretical? Why not any other hertz? Dont sound waves make sand turn into geometric shapes at different frequencies? Why not tune to one of those? These are important questions.

jongtr, can you explain the bottom two pictures, of the harmonic series?


440 is a nice number, 3 times divisible by 2 and also a multiple of 10. I think that's why. Sometimes the easiest explanations should work. You can't empirically test history, unless you want history to repeat itself (and quite frankly, I do not want that to happen). Other cultures have varied on this, however.

We're ultimately dealing with human things, not things that resonate with nature.


Also, harmonic series.

Come on, the harmonic series is basic ratios, and the note distances are exponential.

I'll explain.

Take A2, first space on bass clef and fifth string on a guitar. That's 110Hz played open.

Because sound isn't pure, it has harmonic overtones built into it. Touching the 12th fret on a string will half its length effectively and produce a tone 2x the frequency, 220Hz, aka A3. Perfect octave. (this is the first harmonic, aka F1. F0 is fundamental pitch)

F2, 7th fret: 1/3 length, 330Hz, which runs a bit sharp of E4 (high E).

F3, 5th fret: 1/4 length, 440Hz, tuning A (A4).

F4, 4th fret: 1/5 length, 550Hz, flat of C#5

F5, between 3rd and 4th fret: 1/6 length, 660Hz, sharp of E5. NOTICE: 330Hz and 660Hz are an octave apart.

F6, 3rd fret: 1/7 length, 770Hz, flat of G5

F7, between 2nd and 3rd fret: 1/8 length, 880Hz, A5. 2 octaves above F0 (110Hz) and 1 octave above F1.

F8, on 2nd fret: 1/9 length, 990 Hz, sharp of B5.

Most of the high harmonics are very low-energy, so I won't go further.
Glad to cross paths with you on this adventure called life
Quote by Jet Penguin
lots of flirting with the other key without confirming. JUST LIKE THEIR LOVE IN THE MOVIE OH DAMN.
Quote by Hail
you're acting like you have perfect pitch or something
#27
I spent all day studying the harmonic series and overtones and undertones. Good stuff. However, now I am stuck once again. The entire intonation of musical instruments throws off the entire concept achieving perfect music. It's incredibly disappointing. However, I'm just going to stick with what my man Pythagorus invented and be content with the 12 tone equal temperament system of tuning.

The pentatonic scale seems to be the bridge between all music. It's simple. The opposite of all the wrong notes to a key.

This brings me back to the beginning.

If there are 5 notes to the scale, why name the scale after any particular note/mode?

If you drop the D from the Pentatonic scale that is D E G A C, you are left with an Am7 chord. This works for all 7 pentatonic scales, giving all 4 different 7th chords. It's pretty neat if you ask me. Also, it technically gives you 1-2-4-6 chords too.

I'm basically trying to discover all possible "given" knowledge derived from the simplest definition of music. The given is the 7 note scale defining a key. From that you can derive pentatonic scales and from the scales you can derive 7th chords (1357) and or 1246 chords.
#28
You wouldn't name colour relationships based on associating sounds with set colours and listening for meaningful relationships between colours.

It is equally absurd to associate sounds with visual pictures and naming the sound relationships according to the diagrams.

The reason scales and chords are named the way they are has to do with the root/tonic providing the primary sound of the root/chord.

If you really look at the harmonic series, the circle of fifths, the history and conventions, and most importantly listen then understanding the naming conventions should not be so difficult.


Sorry just saw that last post...I'll read it now.

Pythagoras didn't invent the 12TET tuning system this was a little later. But nevermind that.

The reason that it is the C major pentatonic scale is that the C is the fundamental/root of the scale.

The same notes can also be the A minor pentatonic scale.

What determines whether it is called C major or A minor or anything else is a matter of how the music resolves back to a place of rest. If that place of rest is the C note then the notes of the scale form a relationship around the note C. If they form a relationship around the note A then it is an A minor pentatonic scale.

The pentatonic scale is based off the cycle of fifths. Follow that cycle around as far as you can WITHOUT creating any minor second intervals which are much riskier notes.

If we start with the fundamental C note then C G D A E . If we went one more we would end up with B. This gives us a minor second which poses more potential to create disharmony and is more difficult for people to sing naturally than the major second or minor third intervals in the pentatonic scales.

Chords and scales both are named off the fundamental sound of the scale, the primary sound the sound that provides the overall general primary fundamental sound of the chord/scale.

It's about the sound. There is history, and mathematical reasons that come in to play but putting the sound first is the key to understanding this.

Even Pythagoras didn't start with the math, he started by noticing the sound and trying to find an explanation for what he was hearing.

Put the sound first.
Si
#29
Quote by jrcsgtpeppers


If you drop the D from the Pentatonic scale that is D E G A C, you are left with an Am7 chord. This works for all 7 pentatonic scales, giving all 4 different 7th chords. It's pretty neat if you ask me.


If that's true, then a full barre on every fret has the 5 notes of a pentatonic scale, with one of them repeated twice. The D is the only note you need to mute, or not pluck, in order to get Am7 at the 5th fret.

Upon further inspection, it would appear that it is the minor pent for the E string, so it would be Am pent. And major pent for the C, which would be the root for the D-shape C major chord up on the B string.

Never noticed that before. Although, Am7 in Am pent is pretty obvious, so it's only really that D that is news to me, I guess. The odd pent out. m7 chords are pretty great imo. I use those a lot in my music.
Last edited by fingrpikingood at Feb 6, 2016,
#30
Quote by jrcsgtpeppers
I spent all day studying the harmonic series and overtones and undertones. Good stuff. However, now I am stuck once again. The entire intonation of musical instruments throws off the entire concept achieving perfect music. It's incredibly disappointing. However, I'm just going to stick with what my man Pythagorus invented and be content with the 12 tone equal temperament system of tuning.

Start singing in a choir and you don't need to worry about tuning systems. Or get a fretless guitar. But if you have frets or keys, you need to use some kind of a tuning system. You can never achieve "perfect music" on fretted or keyed instruments.

If there are 5 notes to the scale, why name the scale after any particular note/mode?

If you drop the D from the Pentatonic scale that is D E G A C, you are left with an Am7 chord. This works for all 7 pentatonic scales, giving all 4 different 7th chords. It's pretty neat if you ask me. Also, it technically gives you 1-2-4-6 chords too.

What are those "7 pentatonic scales" you are talking about? Yes, "pentatonic scale" is basically a scale that has 5 notes in it and that's it, but usually when people talk about the pentatonic scale, they mean the scale that you get when you only use black keys.

As said countless times in this thread, the scale is named after the tonic. The same set of notes can have two different names. A C D E G can be called A minor pentatonic or C major pentatonic depending on the tonic. If we are in A minor, it is called the A minor pentatonic. If we are in C major, it is called the C major pentatonic.


But I remember your last thread where you talked about modulations and based on that it seems like you don't really understand keys properly. So maybe you should learn about keys.


Also, "1-2-4-6 chord" is actually an inversion of a m7 chord (7-1-b3-5). That's just how it is. Chords are built by stacking thirds on top of each other. The sound of 1-(b)3-5 is so strong that it would be hard to make it sound like the 7th of the chord is the root. It is about the sound. It sounds like a m7 chord with the 7th in the bass.


And the pentatonic scale is basically a m11 or a major 6/9 chord.
Quote by AlanHB
Just remember that there are no boring scales, just boring players.

Gear

Bach Stradivarius 37G
Charvel So Cal
Fender Dimension Bass
Hartke HyDrive 210c
Ibanez BL70
Laney VC30
Tokai TB48
Yamaha FG720S-12
Yamaha P115
Last edited by MaggaraMarine at Feb 7, 2016,
#31
So let me see if I get this. You want to throw away musical naming conventions and scale formulas and replace them based on a set of circumscribed polygons that you drew.
There's no such thing; there never was. Where I am going you cannot follow me now.
#32
Quote by MaggaraMarine
Start singing in a choir and you don't need to worry about tuning systems. Or get a fretless guitar. But if you have frets or keys, you need to use some kind of a tuning system. You can never achieve "perfect music" on fretted or keyed instruments.


What are those "7 pentatonic scales" you are talking about? Yes, "pentatonic scale" is basically a scale that has 5 notes in it and that's it, but usually when people talk about the pentatonic scale, they mean the scale that you get when you only use black keys.

As said countless times in this thread, the scale is named after the tonic. The same set of notes can have two different names. A C D E G can be called A minor pentatonic or C major pentatonic depending on the tonic. If we are in A minor, it is called the A minor pentatonic. If we are in C major, it is called the C major pentatonic.


But I remember your last thread where you talked about modulations and based on that it seems like you don't really understand keys properly. So maybe you should learn about keys.


Also, "1-2-4-6 chord" is actually an inversion of a m7 chord (7-1-b3-5). That's just how it is. Chords are built by stacking thirds on top of each other. The sound of 1-(b)3-5 is so strong that it would be hard to make it sound like the 7th of the chord is the root. It is about the sound. It sounds like a m7 chord with the 7th in the bass.


And the pentatonic scale is basically a m11 or a major 6/9 chord.


I think definitely. The irony jrcsgtpeppers, to me, is that music theory, like 90% of it, is really really really basic and simple, and actually very intuitive in relation to our perception of music. And then in this mission you've set out on to simplify everything, which is not really such a bad mission, you've gone into something far more complicated and much less intuitive, and you wonder why we don't do it that way because you don't understand the way it is done, and why.

Looking for better ways is not a bad thing. A lot of people have done that, and do that, and they sometimes succeed, and things get refined, which is why over a number of generations things end up pretty solid. But you should first just learn the way it is. It's really easy. If we were sitting at a piano, I could explain it all to you, in like 10 minutes. The main gist of it, anyway. Then everything else is really easy after that, also.

What's long about music theory, is internalizing it on your instrument. I can tell you right now, what you're talking about, is way more complicated than the way theory is, and I can't see any advantage whatsoever, apart from the fact that when you build your diagrams things look balanced.
#33
I'm just on a mission man. Assuming things isn't gonna really give you an idea or where I'm coming from.

Colors have a set frequency and wavelength and have a starting spot in the spectrum. Long wavelength an short and eventually colors stop existing. I like the comparison but I don't. Honestly the harmonic series answered all my questions. It even made me happy because the classic Barr chord is the harmonic series.

I'm just trying to find perfection where perfection only exists if you agree with the human instinct used to create what I'm working with.
#34
Lol you're looking for something you're never going to find.
Glad to cross paths with you on this adventure called life
Quote by Jet Penguin
lots of flirting with the other key without confirming. JUST LIKE THEIR LOVE IN THE MOVIE OH DAMN.
Quote by Hail
you're acting like you have perfect pitch or something
#35
Definitely. Perfection? Did it ever exist? Well...maybe to the person who sees it, but generally, never.

Best bet is to settle for what works well for the individual and keep at it. That might help.

...P.S.: What's humanity like? I wouldn't know at all anymore...

-Sharky
#36
Ok kid it's time to lay off the weed...
Actually called Mark!

Quote by TNfootballfan62
People with a duck for their avatar always give good advice.

...it's a seagull

Quote by Dave_Mc
i wanna see a clip of a recto buying some groceries.


stuffmycatswatchontv.tumblr.com
#37
Quote by jrcsgtpeppers
I spent all day studying the harmonic series and overtones and undertones. Good stuff. However, now I am stuck once again. The entire intonation of musical instruments throws off the entire concept achieving perfect music. It's incredibly disappointing.
Oh dear.
Quote by jrcsgtpeppers

However, I'm just going to stick with what my man Pythagorus invented and be content with the 12 tone equal temperament system of tuning.
You think Pythagoras invented 12-TET???
Quote by jrcsgtpeppers

If you drop the D from the Pentatonic scale that is D E G A C, you are left with an Am7 chord. This works for all 7 pentatonic scales, giving all 4 different 7th chords. It's pretty neat if you ask me.
We went through this. Am7, from your own synthetic pentatonic, yes. Please detail the pentatonics that give us maj7s, dom7s, dim7s, etc. (There are six basic kinds of 7th chord, btw.)
Quote by jrcsgtpeppers
Also, it technically gives you 1-2-4-6 chords too.
OK. 1-2-4-6" is a 7th chord in 3rd inversion (7-1-3-5).
Which pent do you drop a note from to give you that?
Quote by jrcsgtpeppers

I'm basically trying to discover all possible "given" knowledge derived from the simplest definition of music. The given is the 7 note scale defining a key. From that you can derive pentatonic scales and from the scales you can derive 7th chords (1357) and or 1246 chords.
Well duh! If you invent your own pentatonics, sure you can derive chords from them! (And like I said, 1246 is really 7135 in disguise .)
Fun experiment - at least if you play these things and listen - but nothing to do with explaining how music is commonly organised.
#38
Weed. Very strange. I wouldn't know what being high is like since I'm naturally just hyper and that takes care of any wanting or needing for it. Clean and sober for whole life so far ^^

On a side note, jong went very in-depth with everything so far. Wow

-Sharky
#39
Quote by jrcsgtpeppers at #33819183
I'm just trying to find perfection where perfection only exists if you agree with the human instinct used to create what I'm working with.

Page 1 of 2
Recommended threads
Scales
ryanrre456
38
1,476
Last post:
by Vittu0666
SG whammy
ratso
6
411
Last post:
by MastaBassist10