#1
.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................



It's supposed to be about real-world applications of conics or exponential equations... so I'm going to make a problem about finding the focus point on a solar furnace (relates to parabolas)

so the equation:

A Solar Furnace stands 137 feet tall, 168 feet long, and 53 feet wide. Assuming that the heat is to be directed to the focal point, where should the Fresnel lens be placed?

To solve:
                              
  /                          I
 /                           I   137 ft.
(     o <--Focus             I
 \                           I
  \                          I

<-->   53ft.


The directrix is along the y axis, so the y is squared
Parabolic equation:
(y-k)^2 = 4p(x-h)^2

To find the focal distance, f = D^2/16d, where D is the diameter and 'd' represents the depth.

f = 137^2 / 16(53)
f = 18769 / 848
f = 22.13325

Therefore, the focus is located 22'1" feet out from the vertex.


Good?
#2
sure
*-)
Quote by Bob_Sacamano
i kinda wish we all had a penis and vagina instead of buttholes

i mean no offense to buttholes and poop or anything

Rest in Peace, Troy Davis and Trayvon Martin and Jordan Davis and Eric Garner and Mike Brown
#9
im in gcse math excel group were are taking exams early and mine was more than that
#11
that's pretty good for conics, for exponential equations there are lots of applications in estimating populations.